Liquefied Natural Gas (LNG) Yard Hostler Demonstration and Commercialization Project

Project Team

- Port of Long Beach
- Sound Energy Solutions
- WestStart-CALSTART
- Long Beach Container Terminal, Inc.
- United States Environmental
 Protection Agency
 - Awarded \$75,000 to project
- Total project cost: approximately \$1 million

Project Goals

- Assess performance and emissions of LNG yard hostlers
 - Fuel Economy
 - Operator Acceptance
 - Service and Maintenance
 - Compare relative emissions to diesel yard hostlers
 - Business Case

Test Program Overview

- Performance and emissions testing on 3 LNG yard hostlers
- Baseline comparison group: Eight diesel yard hostlers
- In-use testing conducted over 8 months (June 2006 – January 2007)
- Training provided to LBCT staff
- Temporary LNG refueling infrastructure
 3,450 gallon ORCA[™] parked in "fixed" location
- Fuel economy data collected daily
- Drivers and mechanics surveyed
- Emissions testing and analysis performed by UCR CE-CERT

Fuel Economy

- Energy content of LNG < diesel, for direct comparison LNG gallons converted to diesel gallon equivalents (DGE)
- Average Fuel Economy
 - 8 diesel yard hostlers: 1.7 diesel gal/hr
 - 3 LNG yard hostlers: 3.8 LNG gal/hr
 - = 2.2 DGE/hr
- Conclusions

- LNG yard hostlers use about 30% more DGE than diesel yard hostlers
- Expected with heavy-duty spark-ignited engine vs. compression-ignited diesel engine

Operator Acceptance

- 97% felt LNG yard hostlers performed same or better than traditional diesel yard tractors
- 67% of drivers rated LNG yard hostlers superior in general
- Only Cab entry and exit frequently rated "worse" than diesel yard hostlers
- Some cited slow acceleration, vehicle "hesitation" and problems with shifting

Maintainability and Serviceability

- 100% of mechanics rated LNG yard hostlers "acceptable"
- Routine maintenance performed several times during performance testing period
- Noted LNG pressure regulation and leaking problems during early phase of demonstration
 - Westport Innovations upgraded on-vehicle LNG fueling system to address problems

Emissions Testing

- Compared emissions between LNG and diesel yard hostlers
 - 2005 LNG on-road engine
 - Tier 1 diesel off-road engine (2)
 - Tier 2 diesel off-road engine
 - 2005 diesel on-road engine
- Steady-state emissions testing on heavy-duty chasis-dynamometer
- Followed CARB's yard hostlers emissions testing protocol
- Emissions Testing performed by UCR CE-CERT

Emissions Testing Results

- By agreement, PM emissions were not tested
- Lowest NOx emissions produced by 2005 on-road diesel yard hostler
- NOx emissions from LNG yard hostler approximately 21% higher than 2005 on-road diesel yard hostler
 - Possible explanation: LNG engine running "lean" at higher loads - higher engine temperature and higher NOx emissions

Engine Year/Model	Fuel Type	NOx (g/whp-hr)*	
2005 ISB 5.9L	Diesel	2.94	
2005 C-Gas 8.3L	LNG	3.57	

*Values shown in units of grams per wheel-horsepower-hour

Comparison with Earlier Study

- CARB, POLA, and PMSA conducted study of yard hostlers in 2006
- Diesel, liquefied petroleum gas (LPG or propane), and LNG-fueled yard hostlers
- NOx emissions from LNG yard hostler higher compared to diesel yard hostler in POLA study
- NOx emissions slightly lower (approximately 18%) in this study compared to POLA study

Engine Year/Model	Fuel Type	POLB Study		POLA Study	
		NOx	PM	NOx	PM
2004 ISB 5.9L	Diesel			2.47	0.10
2005 ISB 5.9L	Diesel	2.94	0.10		
2005 C-Gas 8.3L	LNG	3.57		4.36	0.008

Business Case Assessment

- LNG yard hostlers not currently offered as standard commercial product
- New diesel yard hostler typically \$65K-\$80K
- Assuming avg. base cost of \$80K, incremental cost for LNG yard hostler approximately \$40K (50% of base cost) = \$120K
- Life cycle cost analysis: diesel and LNG yard hostler approximately equal over 10-year life
- LNG fueling infrastructure costs (est. \$700k per station) and 2010 emissions regulation compliance not considered
- Permitting process for LNG fueling infrastructure can vary
- Demand unlikely without financial or regulatory incentives

Recommendations

- Measure LNG vs. diesel yard hostler emissions using yard hostlers with current engines that meet (or exceed) heavy-duty emissions standards
- Evaluate in-use performance of new LNG yard hostlers
- Update business case analysis with actual costs for new LNG yard hostlers
- Optimize refueling procedures for LNG yard hostler fleets
- Consider port-based incentives to address incremental costs of LNG yard hostlers and capital costs of LNG refueling infrastructure

Next Steps

- Emissions testing on:
 - 2007 on-road diesel engine yard hostler
 - diesel engine yard hostlers converted to operate on LNG fuel
- Develop standard yard hostler duty cycle, available late summer

Thank you!

